
Math 4200
Monday September 21
2.1-2.2 
On Friday we had defined integrals of complex-valued functions  f t  from real 
number domains, i.e. f : a, b .  And we computed one such integral.  We'll pick 
that discussion up today, and use those elementary integrals to define the more 
specialized contour integrals that are a key construction in complex analysis, and which 
are actually complex versions of line integrals 

 P dx  Q dy

that you've worked with in multivariable calculus classes.  

Announcements:  

 



2.1 Integration of complex-valued functions of a real variable t , just as in Calc 1. 
 Introduction to contour integrals - analogous to line integrals from multivariable 
Calculus.

A1 Def:  For f : a, b  continuous, f t = u t  i v t , with 
u = Re f , v = Im f  

a

b
f t  dt = 

a

b
u t  i v t  dt  

a

b
u t  dt  i 

a

b
v t  dt .

     It is useful for estimates to note that since u, v are continuous on a, b  they are 
uniformly continuous  - and you proved in Math 3210 that in this case definite integrals 
are limits of Riemann sums for partionings P  of  a, b , as the "norm" of the partition 
approaches zero:  For

P   a = t0 t1  ...  tn = b
tj tj

* tj t ,      tj = tj 1 tj
P max  tj ,

a

b

u t  dt = lim
P 0

 
j

u tj
* tj,                

a

b

v t  dt = lim
P 0

 
j

v tj
* tj  

so also
A2  Def :

a

b

f t  dt = lim
P 0

 
j

u tj
* tj   i lim

P 0
 

j
v tj

* tj  = lim
P 0

 
j

f tj
* tj.

Example 1:  Use Calc 1 FTC to compute
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2 sin t cos t   i cos2 t sin2 t  dt .
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What we did in the previous example works in general:

A3  Fundamental Theorem of Calculus  for f : a, b :   Let u, v : a, b  
continuous, f t = u t i v t , F t  such that F t = f t .  Then

a

b
f t  dt = F b F a .

Use the triangle inequality on Riemann sums to prove the important integral estimate 
which bounds the modulus of definite integrals in terms of the integrals of their 
modulus:

A4   Theorem

a

b
f t  dt 

a

b
f t dt .



B1  Def  Let A  open, f : A  continuous, : a, b  a C1  curve.  Then 
the complex line integral or contour integral

f z  dz  
a

b
f t t  dt  

where we use the definition A1 on the previous page to compute the integral on the 
right.  Note, we have substituted z = t  and used the differential substitution, 
dz = t dt  into the integrand.

B2  In the case that t 0 for any t it follows from the continuity of t  that 
t 0 on a, b   .  And in this case the complex line integral above can be 

realized as a limit which explains the geometry of what's going on:

f z  dz = lim
max z

j
0
 

j = 0

n 1

f zj zj   ,

P   a = t0 t1  ...  tn = b;          

  tj = tj 1 tj         P max  tj
zj = tj ,      zj = zj 1 zj = tj 1 tj .

The reason this is true is that by the 3210 or 3220 affine approximation formula for the 
C1  curve , 

tj 1 tj  = tj  tj    tj  tj
where one can show that the t 0 uniformly as P 0 because  is 
continuously differentiable.  Also, because M t  the condition that 
max zj 0 in is equivalent to the P 0 in a, b , also because of the 
approximation formula.  So,

  

  lim
max z

j
0
 

j = 0

n 1

f zj zj    =  lim
P 0

 
j

 f tj tj 1 tj

=  lim
P 0

 
j

 f tj tj tj tj  tj

=  lim
P 0

 
j

 f tj tj tj

=
a

b
f t t  dt .



Example 2:   Let t = ei t,  0 t
2

, f z = z.   Compute

f z  dz.

Sketch.  Do you think you would get the same answer if you followed the same quarter 
circle in the same direction, but with a different parameterization?  What if you reversed
direction?  Could you explain why?    



B3  Theorem FTC for contour integrals  Let A  open, f : A  continuous, 
: a, b  a C1curve.  If  f  has an analytic antiderivative in A , i.e. F = f , 

then complex line integrals only depend on the endpoints of the curve , via the formula

f z  dz  F b F a

proof:

Example 3:  Redo Example 2 using the FTC for contour integrals:   

t = ei t,  0 t 2 , f z = z,

z dz = 

r r

i r

r r



B4  Integral estimate:  Let A  open, f : A  continuous, : a, b  a 
C1curve.  Then

 f z  dz = 
a

b
f t t  dt  

 
a

b
f t t  dt      (A4)

=
a

b
f t  t  dt   

Def  Let A  open, f : A  continuous, : a, b  a C1curve.  Then

f z   dz
a

b
f t  t  dt

Using the definition, we see that the shorthand for the integral estimate in B3 is  

 f z  dz  f z   dz .

Note that dz = t  dt  is the element of arclength.

Example 4:  In the running example we showed that for t = ei t,  0 t
2

,

z dz = 1.

Compute

z dz

and verify the integral estimate B4.  



Example 5.  Consider a circle of positive radius a centered at any point z0 .  Find 
an appropriate parameterization which traverses this circle once in the counterclockwise 
direction and verify one of the most-used contour integral equalities in complex analysis:

z z0 = a

1
z z0

 dz   = 2  i .

5b)  In an effort to tie this computation in to the FTC for contour integrals, could you 
compute this integral in that way?  (The answer is yes, if you're careful!)



The connection between contour integrals and Calc 3 line integrals:

Let A  open, f : A  continuous, : a, b  a C1  curve.  write

t = x t  i y t , 
f z = u x, y  i v x, y .

Then

f z  dz = 
a

b
f t t  dt  

=
a

b
u x t , y t  i v x t , y t x t  i y t  dt 

=
a

b
u x t , y t x t v x t , y t y t dt                           

                                                      i
a

b
v x t , y t x t u x t , y t y t dt  

= u dx  v dy  i v dx  u dy.

On Wednesday we'll combine this Calc 3 line integral way of writing contour integrals 
with Calc 3 Green's Theorem, for some interesting section 2.2 results.


